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\ ABSTRACT

The numerical construction of a smooth surface with prescribed weighted
integrals over a domain of interest, is investigated. This construction is
mostly relevant to the estimation of a smooth density function over geographical
regions, from data aggregated over several subregions. By analogy to the defini-
tion of the univariate histospline the smooth surface is defined as the solution
to a certain constrained minimization problem. The application of finite element

¢ methods to the numerical solution of this minimization problem is studied. It
is shown that any finite element procedure, convergent for a related boundary

value problem can be used to construct a sequence of finite element approximations

converging to the smooth surface which solves the constrained minimization problem.
For the case of smoothness requirement of lowest order, a specific finite
element method is considered, and its convergence as the mesh size decreases is

demonstrated numerically for a particular example nf fvolume matchino&.s;::\\\\\

AMS (MOS) Subject Classifications: 41A63, 41A15, 65D10, 65N30, 65K10.

Key Words: sSurface fitting, Aggregated data, volume matching, bivariate histo-
splines, constrained minimization, finite element methods, elliptic
boundary value problems, iterated Laplacian.
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SIGNIFICANCE AND EXPLANATION

We consider a numerical method for the construction of a smooth density
function from available data in aggregated form. For example, suppose that the
population census is given by bureaucratic region (say, states) and it s desired

to construct numerically a smooth function £(x,y) intended to be an estimate of

the population density at location (x,y). In order to select from the infinitely
many ways in which this could be done a particular one, we recuire that f Dbe the
"smocthest" function matching the prescribed aggregated data. Our measurce of

roughness to be minimized by £ 1is the integral over the region of intercst of a
guadratic form in all the derivatives of f of a certain order. This order is a

free parameter which can be chosen according to the required degree of smoothress.

By using finite element technigues we reduce the computation of the minimal £f to

that of solving a finite dimensional constrained minimization problem of a particu-
lar structure. We show that any finite element scheme which produces good approxi-
mations to the solution of a related elliptic boundary value problem can be used
in order to produce good approximations to the required smooth surface. This
method is discussed in detail for the particular case of "volume matching”, under

the requirement of minimal integral of the sum of squares of the first partial

derivatives. '1
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. ) Nira Dyn and Warren Ferguson

1. Introduction

This work is motivated by the need for a numerical procedure for the construction of a
smooth surface, describing a certain geographically varying quantity over a finite geograpii-
cal region, given the integrals of the quantity over several disjoint sub-regions. One of

these problems is that of estimating the density of a population over an area as a smooth

function of the geographical coordinates, given the population census according to a certair
bureaucratic subdivision of the area [11], [5]. 1In this context the additional constraint of
positivity of the surface is in place.

A method for estimating a multivariate smooth function from aggregated data is rpresented
and analyzed in [5]. The function is chosen by minimizing a region-dependent rouchness
criterion subject to the given aggregated data. For the bivariate case and for homogeneous

roughness criteria the estimating surface is taken as the solution of the following minimiza-

tion problem:

Problem I: Find u* . H'(S)

T om 3™y \2
(1.1) minimizing J (w) = [ ¥ (4 - axdy
m o i m-3i
Q i=0 (9% 3
among all function satisfying
(1.2 Louz:[ub, =s, , i=l,...,N .
i , i i
§2
o 2 2, .
Here 1$ a bounded domain in RT, @i o LTG0 i=1,...,N and
[}
ST e —
on sabbatical from department of Mathematical Scicnces, Tol-Aviv Universrte, foracl
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(1.3) H () = {u] e, o <i<k, 0<k<m} .

u
axlayk—l

m+l

2 ) <imensional space of all polynomials of total

Since Jm(u) vanishes on Qm ~ the |(
degree < m, this method of estimating a surface reproduces any surface which is a poly-

nomial in Qm' whenever there is only one polynomial in Qn satisfying the constraints (1.2).

Thus the degree of smoothness in m, which is a free parameter, can be chosen according to the
required smoothness properties of the surface, but with the obvious limitation that Qm daes

not contain & nontrivial polynomial satisfying (1.2) with sl=---=sN = 0. 1In particular this

m+l

implies that ( 2

) < N. This approach is similar to that of [4}, [9), where interpolating

surfaces are constructed by minimizing region independent roughness criteria of the form ,

m / m 2
(1.4) [, I —Ta—‘:n: axdy .
R i=0 Ix"Iy

The solution to Problem I is characterized in [5], and is shown to be related to a certain

elliptic boundary value problem. This solution can be regarded as a generalization of the

concept of univariate histosplines [2]). The "volume matching” problem in a tensor~product

situation is studied in (10}, where the solution is shown to be a tensor-product of uni- '

variate histosplines and where a computational algorithm is presented. .
Tn the present work we investigate the applicability of finite element methods developed

for the solution of elliptic boundary value problems, to the construction of approximations to

the solution of Problem I. We discretize Problem I by minimizing (1.1) subject to (1.2) amona

all functions in a finite dimensional subspace of Hm(f) spanned by “finite elements™. It

is shown that any finite element scheme, convergent for a related clliptic boundary value

i:roblem, can be used to construct a sequence of finite element approximations converaine to

the solution of Problem I. '
In case the surfacc 1s required to bho nnnqcﬂativu we are led to:

Problem II: Find u . 1™ ) minimizing (1.1) among all nonnceaative functions satisfaint

(1.2).

tor the case m = 1 the discretized version of Problem Il becomes a ‘juadratic pro- 1
gramming problem when the discretization is made by nonnegative finite elements, and a

characterization of the discretization solution 1s given.

-2-
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The numerical computation of the solution to the discretized Problem I involves a solution
of a large scale linear system of a special structure, with a main part resembling the linear
system characteristic to the finite element solution of the related boundary value problem.

Iterative schemes for the computation of the solution of such large systems are analvzed 1in

[é1.
7.2 2\2
Problem II is formulated for m = 1 and for J(u) = f i—% + 3 u) dxdy 1n the context
2 \Ix 3y

of "volume matching" in [11} where an iterative procedure is presented for the numerical
computation of an approximate solution. The procedure is tested on several examples, and the
iterations converge. Yet no proof of converdgence is aiven, This procedure with the additional
condition u = O on the boundary T of .., and without the steps that 1mpose nonneaativity,
is in fact one of the converging iterative schemes of 6] (see also Section 5).  The imp lemen-
tation of the nonnegativity in J1l1) scoems to be incorrect, in view of the characterization of
the solution to the discretized version of Problem II (section 3}, and not alwavs possible as
remarked in [1l1].

Iterative schemes for the compautation of solutions to the discretized version of froblem
II for m = 1, and the convergence of these solutions to the solution of the continuous,
problem, are yvet under investiragation.

In Section 2 the results in %) concerning the solution of Problem 1oare revaewed, I
section 3 we discretize Problem Toand characterize the rolution of the diccretiaed prablem
for m - 1, and for m - 1 with the nonnegataivity constraints,  The converacnee of the tainat,
element solations s dedaldt with 1 Scection J, while a vompatationdl method tor the vumery ol
solution of the drscret g jrablem oo T,  and 1t amplementation o o compator oyt
"volume matebanag” probdem, qee cbreonsced g Section L The converdence of thin scheme et

encraaa o e ke trate o name rrealls tor o rarticular examg oot "volume mats e,

— - ——— —
—~—— . e . ———




4. Characterization of the solution of Problem I.

The analysis of Problem I ir (5] is made unduer

of (1.2) with the subspace QN of dimension M =

3
+
—

in %,y of total degree < m.

O R N Rt

Assumption 2.1,
The only polynomial g . Qm which satisfies ,r u,:! =, 1t leee
equivalently
5 g e o M N . .
(2. 1) rank: ) ql.‘ i=1,3=1 ° M, with dyreeeed, b
The characterization of the solution of brotlen Toow 2poerer
form associated with the functional Jm of (1.1t
m
5 ’ A
(2.2} A {u,v) = [N S| aX
m ‘ MR
1=
It 1s shown 1rn {5] that the solution o frotier 1, v,
SAL1sLVING:
N
o) Am(u',v\ = -0 (o tor all
Ly G
[WARE ) L ou* ! urs s s, 1=, 0.
1 M 1 L
with IREERERRN constants.  Since A v,a) = ST RN .
N :
o ' B - [
. N .
1
oo cnaracterysat noe ¢ I B [ A i [
-
)
Co ot ) . . . .
y
} At Y Y e ol homaan o . P
g - S , - - po o e RENIE VIS WRSIRREIS P
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(2.7 Lq f:; o, = s, i=l M

and where 51., 1l < i < N-M, is the unique solution in Hm(.?) of the followinag boundary valu:

problem, formulated variationally as: !

- 1
(2.8) A(E.,v) = [ @.v for all v e H'(D) i
m 1 1 :
Q
. £ = 1= ceey
(2.9) _L £365 = 0, 3°1, M
1
In (2.8)
M
. b = L
(2-10) O3 = b5 T L Yiy'y
J=1
where {Yij}?ﬂ. are constants determined by the condition:
(2.11) { a9, =0 for all qe Q

Q

In case ¢ is a smooth domain the boundary value problem (2.8), (2.9) can b reformuiat.

as [5]:
2 PAN
] 3 N . .
| = 4 E.o= ¢, in
\ 2 2,71 i
\3x 3y /
(2.12) (Sjii =0 on T m < i< 2m-1
= = = N
Ly j Lidy =0, 3=l
In (2.12) T is the boundary of ., and 6m""'5"m—l are differential operators o0

m,...,2m-1, such that the generalized Green Formula holds:

N

“a
(2.13) A (u,v) = (-7 v s
m Vs
N JX

)
) wo
dm=1-9 )
=0 in
. hjv . :
with —-— the jth normal derivative of wv.
SnJ
-6H-
“A I s . e
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- In particular, for m=l, 61 =3, and for m=2, 52 == 63 =Tt 2 with
n 3n 3n Indt
3
37 the tangential derivative.
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3. Discretization of Problem I and Problem II.

Let Vn be the span of n linearly independent functions vl,...,vn satisfying the

following assumption:
Assumption 3.1.
Vn contains the space Qm , and

the linear functionals Ll""'LN in (1.2) are linearly independent over vn.

The first requirement in Assumption 3.1 can be met with Vyres Vo piecewise polynomials

in x,y of total degree < m, with local supports, such that vi . Cm-l(j), i=1l,...,n. The

second requirement can be guaranteed by taking n large enough and the supports of VireeeeV

small enough, with their union containing In the "volume matching" problem, where

(3.1) ru=[ uw i=l,..0N

for Ql,...,ﬂN a partition of ), the second part of Assumption 3.1 is satisfied, if to each

£y there corresponds a nonnegative function in Vn whose support is contained in i Both

th

requirements can be met if v vy {n>N) are tensor products of m dearee univariate

17
B-splines [10], although such a choice is not efficient computationally for m ~ 1.

The discretized version of Problem I with respect to Vn is [3]):

Problem I : Find v  V
D n

minimizing 1 (v)
m

among all functions satisfving {(1.2).
Theorem 3.1: There exists a unique v . Vn which solves Problem ID. This solution is

the unigue clement in Vt which satisfies:
g

(3.2) A v,y = - v v e, dml,l0n
m i e ) - 173
=1 -
(3. I P £ PRI
n N .
where fy ot are scenstants sati1afvana
3 1=1
_'7_
e _ —— -




/'n n
{3.8) xTAx = A . S X. V., Y x.v.\ > 0 with eguality
-~ -~ mV ': l 1 -~ ]1 —
\Jd=1 =1
n §
ifE Y x v
1=1
-8-
i T v e e
it setmndile Ba LT -

N
(3.4) T Y0 [ qs, =0 forall qcgq
. 3 m
j=1 Q
n
Proof: Aany solution of Problem ID, v = E bivi' must satisfy the necessary condit;nr.:
i=1
d N n
(3.5 o+ L v ve, - s =0 d=l..n
. LI B B
since Problem ID is an n-dimensional constrained minimization problem. 1In (3.%) '1; N
A

are the Lagrange multipliers corresponding to the constraints (3.3). Differentiatinag (3.3
we obtain conditions (3.2). 1In view of the first part of Assumption 3.1, (3.4) follows
directly from (3.2).

In order to demonstrate the existence of a unique element v in Vn satisfyving the

necessary conditions (3.2) and (3.3), it is sufficient to show that the svstem

(3.6) =f
E' 0/%y s/

admits a unique solution, where b = (bl""’b Y', Y (Yl, .\N)', s = (sl, 'SV>I 2 ‘

the matrices A and E are defined as H
3.7 A = {a (v.,v) " n = 1Sk N

{ ) nxn m( i’ )) i=1,j=1' EnXN {{\ Vi¢j i=1,j=1

Thus to complete the proof we show that the system

. n N . PR X .
with x . R, yv ¢ R, admits only the trivial solution. HNow the matrix A 18 nonnoeaative

Jdefinite since by (3.7) and (2.2) for any x ¢ R




Rewriting (3.8) we obtain
(3.9) Ax + Ey =0, E'x =0

and therefore §'Ax = —x'EY = 0, which together with (3.8) implies that

the other hand the equation E'x = 0 of (3.9), in view of (3.7}, becomes

(3.10) j/§xv\¢=o i=1 N
. A \g=l 3300 7 O oot

n
Since z X. v, € Qm, (3.10) is consistent with Assumption 2.1 only if x = J. Hence by (3.%)

: 33
j=1 N
Ey = 0 or equivalently f vi 2 yj¢j =0, 1i=l,...,n which is consistent with Assumption 3.l
Q j=1
only if y = 0. A

When the functions v -1V~ are of local support, as is the case in the finite element

1

method, the nonnegative definite matrix A in (3.6) {and in (3.153)) is sparse, and of srcecial

structure. These properties of A allow one to efficiently solve the system (3.6) using one

of the iterative methods analyced in [6}. (One such method is presented in Section 5).

In analogy to the characterization (2.,6)-(2.11) of the solution of Problem I we have:

n

Theorem 3.2. Let b,y be the solution of (3.6). Then v = Y bivl has the unigue represcrnt-

N-M i=1
ation v = 2 c.n. + g*, with g* ¢ @ satisfying f gt. = s,., 1i=1,...,%, and where for

j=1 * 1 m LT i
1<i<N-M ¢ v, is determined uniquely bv
(3.11) Ap(n; V) = f T

G
(3.12) [‘ni¢j =0, j=l,....M ,
- ~M

with (q;i}[::l defined by (2.10).

Proof: First we observe that (3.11) and (3.12) admit a unigue solution. In fact the liun. .
system corresponding to (3.11l) is singular, but by (3.8) and (2.10) the richt-hand side ¢
system is in the span of the columns of the matrix of the system =-A. Hence (2.11) aimie

. solution, and all solutions differ by a polynomial in Om. Conditions (3.12) determine o

unique element from this set of solutions, in view of (2.1).




The functions n are linearly independent in view of (3.11), (2.10) and the

177 TNy

linear independence of L ,...,LN over Vn. Therefore the (N-M) x (11-M) matrix with entries

1
{f ﬁi¢j+ﬂ}§-;=l is non~singular, since by (3.12), (2.10) and (3.11)

E =/ i =2 Lo
( “1']"-:4 I; i3 m(') 1) ’

- . . . . m .
and the bilinear form Am(-,‘) is an inner-product in the subspace {ufu < H (),

f u¢j =0, j=l,...,1} = in ‘. Hence given s, thnere exists a unique

TRRRRRE Y

c = (cl,...,c )' such that

N-M .
7 N=m N
(3.13) i RIS s+ fere = s =, l
NG A / .
N n
and the function v = ) Ciqi + g% = Z bivi satisfies (3.2) and (3.3), in view of (3.11j,
i=1 1=]

(3.12) and (3.13). This completes the proof of the theorem.

Before proceeding to the analysis of the convergence of the solutions of a sequence of

discretized problems to tue solution of the continuous problem, we consider the discretized

version of Problem II. The discretization is done by considering Problem II in the subspace

V , namely looking for 4 = (d.,...,d)' such that w = YP dv, >0 din [, minimizes
n 1 n “i=1 11—
Jm(u) of (1.1) among all positive functions in Vn satisfyinag (1.2). 1In case the condition
n
E divi >0 in 7, 1is eguivalent to the condition d > 0, the discretized version of Problem
1=1
II pecomes a gquadratic programming problem in terms of A, E, s, d, namely:
: . n
Problem IT_: Find d <« R
froplem ‘5 a
(3.14) minimizing @&'Ad

among all vec. rs satisfying E'd=3s, 4 >0 .

Tne solution of (3.14) is characterized as the unique solution to the problem (8]:
Ad=EY > O

d’'(Ad-EY) = O .
{3.15) ) )

=10~




with y = (\l,...,\N)' N constants determined uniquely by (3.15).

. . . , m .

For the case m=1 the functions in Hl(ﬂ) are not necessarily continuous (H (2) < C(.0)

for m > 2), and the positivity must be interpreted not pointwise but in the followina sense:
1 . .y . ce . L s ; .

u e H () is "positive" in !, 1if it is the limit of a sequence of positive functions in

Cw(ﬁ) in the Sobolev norm

2 2

2 2 3

Hull = e & s &Yy axay .
1 Ix 3y

HBU(2) o i

In this case (- 1) one can take v ERRA M to be piecewise linear with local supports, such

1’

that v, 0 in ¥, and that for a reqular mesh of points {xl,...,xn‘ (S v](xj) = (13'

i,j=1,....,n. Such a choice is furnished, for example, by supports of the form:

Corresponding to each support of the above form, centered at X the finite clement vx 18
a linear function within its support which vanishes on the boundaries of the support and satis-
fies vi(xl) =1, vi(x) * . For such a cholce of finite clements

n
(3.16) 1 dv., ~ 0 in e q = (dl""'dn)l -0,

and the characterization (3.15 is valid. This characterization is the key to the development
of an efficient algorithm for the solution of (3.14) for a large and sparse matrix A, which
takes into account the special structure of AL We intend to 1nvestiagate this alaorithm else-

where.

-11-
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4. Convergence of the discretized solutions.

The characterization (2.3}, (2.4) of the solution to Problem 1 differs from thc character-
1zation of weak solutions to elliptic boundary value problems (1], (3], by the fact that i
right-hand side of (2.3) is not given, but instead its structure up to N constants 1e know:,
and there is additional information on the solution in integral form given by (2.4). ‘licver-
theless in the analysis of the convergence of a finite element scheme to the solution of
Problem I, the convergence of that finite element scheme to the solution of the followinc
boundary value problem is relevant:

(4.1) Aduv) = [ fv for all ve BN, feti, | fg=0, qe o,
? o

Liu =0, i=1,...,M .

Let V

h denote a space of finite elements such that the area of the support of each

element is bounded from below and above by ah2 and th respectively (0 < a « 2). The

finite elements approximation to the solution of (4.1) is u_ ¢ vh

n satisfying (1], [3}:

1
~—
i)
<
<

.
<

Am(uh.V)
(4.2) )
Liu, =0 i=l,....M

Theorem 4.1. Let wu,u  be determined by (4.1) and (4.2) respectively, and let wv_: \, by

h

the finite elements approximation to the solution of Problem I, u*. If

(4.3) i(u-uh{[ < B(whY, v>0
where B(u) is a constant depending on u, and |/ +| is a norm with the prorertv
. m .
(4.4) vl s oglivl, o vedl
L7 ()
then for h >~ 0 small enough
(4.5) v mati] £ hY with G = Gimyd ,vesidyss ieeis))

-12-
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Proof: By the result cited in Section 2 in (2.2) - (2.6)

N-M
(4.6) u* = izlczci + g%, Qq* ¢ Qm' {7q*¢i = s

(4.7) A (ng,v) = oy, vev

Q h

we conclude from Theorem 3.2 that

N-M
(4.8) vy = .2 cny + g*
i=1
while by assumption (4.3) of the theorem
v .
(4.9) lleg-n; Il < BEEDNT, i=1,...,N-M

Now ¢ = (cl,...,cN)' and c* = (c*,...,c&)' satisfy

1
(4.10) Lc* = g, Kgc=2¢
where

- N-M - N-M _ { e 1N
(4.11) L=Aa (6 60 L) K=Aa(nundd o o= sy =) g% gy
Hence
_ -1 _ _-l-1-1 e e - JN-M
(4.12) c-c* = K " (L-K)c* = (I-L "F) 'L Fc*, F = L-K : 131,921
In view of (4.9) and the property (4.4) of the norm .
(4.13) ‘fij‘ < .r‘ ‘Ei-nil [¢j+Ml bl [|¢]+M|| 2 H"i'ni” ) = L’lh
2 L) [EN]
with G, = G max{||¢. || B(5 ) 1.
[o +M i
1 1,] J LZ(Q)
=13~
. PR
i e e e\ e __—— ;
henemnitenstingaiti s i P A

where ii is the unique solution to problem (2.8}, (2.9) which is of the form (4.1).

by ni the finite-element approximation to Ei' determined uniguely by:




I \ -1 .
Therefore | ¢ e o (N-M)Glh\, and for h small enough such that LoF %. 4.1
yields
.‘L_l bow !
. ] omow ' . ' v S
(4.14 [ L ip ch
-0 e o
-1
with G, = 2L R w 51
To complete the proof of the theorem observe that by (4.0) and (4.8)
N:H N;.“. N\-}‘l N‘-_M H:M
-yt = Vel - * = ¥y =1 —evy (v =7 \ .c®) ,
M ey NI N Ll(\1 l) + (c1 Cx)( N 1) + (c1 MU
1=1 1=1 1=1 1=1 1=1
which in view of the bounds (4.9) and (4.14) becomes:
N-M N-M N\-_M
. PRTE I T = 4 W v G y r : S I
gy Tt \Ll‘Bl(ﬁl)A - \zh B(,l)h + ) Jh GooLoeh .
1=1 i=1 1=]

with G depending on the bilinear form Am('.'), the functions & ,...,! , and the Jdata

SyseensS,, .

1’ N
Thus we have reduced the converyence problem related to the solution of Problem I by

finite elements schemes, to the converacnce of these schemes for elliptic boundary value

problems of the form (4.1) - the Neumann jroblems.

-14~
L‘““f e e
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5. Computation of a volume matching surface for msl,

In this sectlon we specialize to the volume matching problem with m=l. Froblem I then

becomes :

Find u* . Hl(ﬁ)

minimizina ) (u) = z’{lu2 + uz)dxdy
1 i x v

(5.1) among all functions satisfying

u = Sx' 3=1,....N

with hl,...,;“ a partition of

For this problem an appropriate finite element method uses "tent” functions in C(.)),

with support of the form (7]:

}L (T EENES

ffagure 5.1

1f we denote by zl,....zn the vertices of the rectanqular mesh covering .., then the

element vl with support centered at 2 15 determined by being piecewise linear and satis-

L}
fying the interpolation conditions:

v(z‘) = 1
(5.2

) v(zl’l) = v(z)~l) = V(zl‘K) = V(ZL-K) = V(zx+K¢l) = V(zi-x-l) = 0

with ¥ the nuimber of joints 2 in cach row of the mesh.

=15~
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To obtain the matrix A 1n {3.5) we observe that for the casc¢ support (vly

4 i=)
5.3 ,v.) = (- i- =1, i3, =
{5.3) Aptviovy 1 li-y) =1 13, = K
0 otherwise
In case support (vl) ¥ support (vi) n oAl ¥ {9} the entries of the corresponding row (o A .

valculated according to the geometry of the domain

{
The matrix E 1n (3.5) 1s computed by considering the geometry of the partit:o:
:1""'"V' In particular 1f support (Vx) < :1 then the elements of the corresiondin - oo ;
i
E  are determined by | J
]
}
2 I
h 1f i=3 i
5.4) v, =
( j\ i i
e 0 if Uy
since for 1 such that support (vl) A .= (¢} there is no corresponding row in A o1 i b,

the diagonal of A consists of positive entries only. Therefore the computation of too
solution of the linear system {(3.6) can be performed by one of the 1terative schemes analor.
in [6]. For the computation of the numerical example to be presented, we use a aencralise

JOR scheme obtained by splitting the matrix of the system (3.6} 1n the followine wao:

K+ / \(k
/B E /b (k+1) /0 C 0 b (k)
= +
\.' 0 3 s Q O\ Yy
! N A
with B = é-dxau A, ¢ = R=A, 0 - . <« 1, This splittinag corresponds to the splaittaing 1 ¢

matrix A according to the classical JOR method (12). The converaence of this i1te: ..,
scheme to the solution of the system (3.6) from any 1nitial guess is guaranteod by Theoaes
in {0, since A and E  satisfy the followinag reaulrements: A 1§ symmetric nonhecat s
definite with posttive entries along the diaqonal; the only common vector to the nuli oo

of A and E' s x = U,

The computation of each 1terant is accomplished in three steps:




(k)

(1} Given b compute x from

x = B-lcp(k)
(k+1) .
(2) Solve for the linear system of order MN(<<n)
(E‘B-IE)Y(R*I) = E'x - s
(3) Compute b(k+l) from
plktl) x - B-lEy(k+1) .
(k+1)

Hence the computation of b

involves two multiplications of a vector by the matr.x

1 . X . f v ; : .
B ". This computation requires 2n multiplications since B 1s diagonal. ‘loreover, tre

.

matrix E'B-IE of the order N <<n, can be initially factorized into the product L.°,
where L is lower triangular.

Then each step (2) involves only one forward and one backward substitution, eacn of orier
N. For the actual computation it is not necessary to store the matrices B, C, L, Fut +.
store sufficient information for the performance of multiplication of each of these matrice:
by a vector.

Under the restrictive assumption, that all boundaries of .., ‘o 11 alona ter:-

.?1,...
zontal and vertical mesh lines, the determination of the elements of B, T and [ duaring to.
computation is considerably simplified. It is sufficient to store an array of dimension 1 o+
with each row indicating the subregions which contain the four parts of the sujport of i
corresponding finite element (these parts are denoted by 1, 2, 3, 4 in Fioure 5.1). Ti.s

information contains also the geometry of the domain ., if an additional rearon o an

assumed to contain all those parts of the n supports which are not contained 1n

The convergence of this finite element scheme as h » 0 to the solution of (5.1
from Theorem 4.1, in view of the convergence properties of this scheme when ajplied too
value problems of the form [7]:

1
Al(u,v) = f fv dxdy for any v - 1 ()

f v = 0

).

a s el e —— S e S = s s




) . b

witn f LT, s f = 0. It 1s shown in [7)] that the L“(.) converuence of this finite
, - . g s . .
clement soneme as o - 0 to the solution of (5.5 1s  O(h}), if ;;, :; are Lipschitz
B y

vontinuous.,
We complete thls section by presenting a numerical result which demonstrates the conver-
Junce of tills finite element scheme, as h - 0, to the solution of a problem of the form

(53.1). The problem we will consider has

"

10,11 = (Q,1} ’
<t da

TR SR T ST R

1 1
= (311 < (0.3

3
Sl=~l .
82-8 '

In Table 5.1 we present the values of vh and an estimate of fvh - u*! at the points
1 .
(x,y) = (_l;,*)) and (-3.-2‘). Table 5.1 suagests that for this problem the convergence of the

finite element scheme 1s at least O(h), and possibly O(hz). as h = 0,

E (X,y) = (0,1) ,I (x,v) = (1—,0)
-1 | h 2o n :

n 1 v PAVAR SV l v ivoeu%)
I8 T 9.540 1r 23 ‘ ;
I Vg, 232 17.039 .04
| ' \ |
D16 P 711 i 261 1170w ‘ .01
i ' {

[ 24 1 9.747 L0250 117,004 L005
} ' t "
‘[ 32 | 9.761 . -011 | 17.002 L0023

Table 5.1

-
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